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Calculations of reaction rates for the third-order QED process of photon splitting 7 --4 3'7

in strong magnetic fields traditionally have employed either the effective Lagrangian method or

variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner [1] presented

an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of

such a formulation include the ability to compute rates near pair resonances above pair threshold.

This paper presents new developments of the Landau representation formalism as applied to photon

splitting, providing significant advances beyond the work of [1] by summing over the spin quantum

numbers of the electron propagators, and analytically integrating over the component of momentum

of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering

amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications.

Such developments can facilitate numerical computations of splitting considerably both below and

above pair threshold. Specializations to two regimes of interest are obtained, namely the limit

of highly supercritical fields and the domain where photon energies are far inferior to that for

the threshold of single-photon pair creation. In particular, for the first time the low-frequency

amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives.

In addition, the equivalence of the asymptotic forms in these two domains to extant results from

effective Lagrangian/proper-time formulations is demonstrated.

12.20.Ds, 95.30.Cq, 97.60.Gb, 97.60.Jd, 98.70.Rz

I. INTRODUCTION

The third-order quantum electrodynamical process of photon splitting 3' --4 3"/ in a strong magnetic field, currently

popular in several astrophysical models of different neutron star sources, was first studied over three decades ago.

Due to analytic complexities encountered when investigating this interaction, it was not until the beginning of the

1970s that a body of correct and uncontroversial results emerged. These early splitting calculations used either

effective Lagrangian [2-4] or variations of Schwinger's proper-time techniques [5-7], the expediency of which yielded

compact analytic forms for the rates R when specializing to low energy (R ¢x w s ) or low field (R o¢ B 6 ) cases.

After a hiatus of nearly two decades, photon splitting became of interest again in the literature [8-11] following the

publication of an S-matrix calculation in the Landau representation of its rates by Mentzel, Berg and Wunner [1],

specifically because of their contention that the earlier works cited above had seriously underestimated the strength

of this process. The rates computed in [1] were later retracted in [12], with a sign error in their numerical coding

having been discovered and corrected. Mentzel et al.'s analytic derivation was the first comprehensive presentation

of the application of a Landau representation technique specifically to magnetic photon splitting, though the QED

formalism presented by Melrose and Parle [13,14] virtually provided an equivalent enunciation of such S-matrix forms

for splitting amplitudes. More recently, Weise, Baring & Melrose [11] confirmed the analytic derivation of [1.]. The

Landau representation calculations and most of the earlier effective Lagrangian and proper-time presentations were

generally applicable to non-dispersive regimes below the pair creation threshold (hw = 2mc 2 ), where the momentum

vectors of the initial and final photons are collinear, and arbitrary field strengths.

Below pair threshold, the effective Lagrangian approach of [2-4] and the proper-time calculations in [5-8] appear

much more amenable for the purposes of numerical evaluation than the S-matrix formulation in the Landau repre-

sentation. This arises because effective Lagrangian and proper-time (collectively referred to by the label ELP here)

methods produce results that involve triple integrals over relatively simple (hyperbolic and exponential) functions,

while the S-matrix amplitudes integrate over the parallel momentum pz and include a triple summation over the
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Landau level quantum numbers of the intermediate pair states. Both techniques start from different but equivalent

[15] forms of the electron propagator, and hence S-matrix computations [1,11] should yield identical results to proper-
time numerics [2-8]. For the specific case of magnetic pair creation _ --+ e+e - , such an equivalence of the S-matrix

and proper-time methods has been demonstrated [16,17], but only via continuous asymptotic approximations that
smoothly average out the exact "sawtooth" resonance structure. Yet the S-matrix Landau representation approach

explicitly retains the resonances in the scattering amplitudes above pair threshold, whereas the ELP methods elimi-
nate such information early during developments. Photon splitting becomes effectively first-order in o_f at any one of

a multitude of pair resonances, generated when the intermediate states become "on-shell." Hence it is quite possible
that splitting can compete effectively with pair creation as a photon absorption mechanism above pair threshold. As-

certaining whether this is true is an interesting physics question. Moreover, if splitting is approximately as probable
as pair creation above threshold, then it manifestly changes the character of vacuum dispersion, so that quadratic

(and by inference perhaps higher order) contributions to the vacuum polarization tensor become significant relative
to the standard linear ones used in the derivation [4] of kinematic selection rules for splitting. Hence, the generation

of exact and compact expressions for the rates for 7 -+ "/'_ valid both below and above pair creation threshold is

clearly a worthwhile enterprise from a physics perspective.
Developed expressions for the rates for photon splitting are also important for astrophysical applications of this

process, particularly to effect efficient and accurate computations of such rates. These applications have so far focused
on neutron star magnetospheres, primarily on models of soft gamma repeaters (SGRs) and strongly-magnetized

pulsars, both being extremely topical in the astrophysics community at present. The potential importance of splitting
in neutron star environments was suggested by [4,18,19]. Possible formation of splitting cascades has been explored
in models of SGR transient outbursts as a means of softening the spectrum efficiently with no production of pairs

[20-23]. If both polarizations can split, or if polarization switching is active during SGR outbursts, then the properties
of the splitting cross-section guarantee emergent spectra in the observed range (20-150 keV) and of the observed shape
for all fields in excess of around 1014Gauss [20-22], provided that the emission region is not concentrated near the

polar cap. The spectral properties of SGRs in quiescent emission appear to be distinct from those during outburst.
Pulsations and temporal increases of their periods (i.e. spin-down) have now been observed [24-26] for two of the four

confirmed SGRs (SGR 1806-20 and SGR 1900+14), leading to inferences of fields in the vicinity of 1015 Gauss. The
connection between these pulsars of extremely high magnetization, so-called magnetars, and conventional radio/X-

ray/gamma-ray pulsars is not well-unde'rstood. Baring & Harding [27] postulated that radio quiescence, a property of
the SGRs, may be common in magnetars due to the efficient action of photon splitting and other effects in suppressing

the creation of pairs. Photon splitting also has spectral implications for such pulsars with more modest fields: [28]
demonstrated that the unusual absence of > 30 MeV emission in the gamma-ray pulsar PSR 1509-58 (whose spin-

down field is .-. 3 × 1013 Gauss) can naturally be explained by the operation of "_ --+ "/7 in the intense magnetic and

gravitational fields near its surface.
Several desirable goals are immediately identifiable on the basis of this historical path for the study of the physics of

photon splitting, and the needs of the astrophysics community. It would be satisfying (i) to obtain analytic expressions
for rates that are valid above pair creation threshold using the Landau representation methodology, (ii) to know

whether the analytic formalism of Mentzel et al. [1] can be developed and simplified, and (iii) to demonstrate a formal

equivalence between this S-matrix Landau representation approach and extant results from proper-time/effective

Lagrangian techniques. This paper addresses these issues, using the verified analytic formalism of Mentzel et al. as
the starting point for mathematical developments. The analysis here considers all the polarization modes that are

permitted by the CP invariance symmetry ( .1--+111], l--r_k_l_ and I1-+-1-11), and applies for collinear momenta of the
incoming and outgoing photons, i.e. when the effects of vacuum dispersion are neglected. A significant development
provided in this paper is the dramatic simplification incurred by algebraically performing the summation over the

spin states that are incorporated in the electron propagators. The resulting expressions in Section II A (first stated in

[11]) are relatively compact, and of an appearance familiar to Landau representation/S-matrix theory applications to
magnetized environments (i.e. including associated Laguerre functions). Furthermore, here the integrations over the
momentum parallel to the field are performed analytically for the first time in Section II B, rendering the splitting
rates in most amenable forms (see Eqs. [12] and [15]) that are optimal for numerical applications: the analytic forms

presented consist of just triple summations over Landau level quantum numbers of the intermediate states. These
general results are valid both below and above pair threshold at non-resonant photon energies, and provide substantial
advances over the work of [1]; they are much more suitable for numerical evaluation since many cancellations have

been eliminated algebraically.
Two specializations are discussed in Section III, primarily to (partially) demonstrate equivalence of the Landau

representation formalism presented here with extant proper-time/effective Lagrangian limiting forms for splitting
rates, and simultaneously to serve as a check on the mathematical manipulations of this paper. Results are presented
for all three polarization modes permitted by CP invariance in the limit of zero dispersion. The first asymptotic

regime is (see Section III A) for highly supercritical fields, B >> Bc = m2c3/eh, where in the case of -1--+[1[1, the limit



wasfoundto concurwitharecentanalyticresultthatwasobtainedbyBaieret al.[8],whilenewresultswereobtained
fortheothertwomodes.In thesecondspecialization,in SectionIII B,asymptoticresultsforenergiesw << mc 2 well

below pair creation threshold were obtained, reproducing the cubic energy dependence of the amplitudes obtained

by other QED techniques. Moreover, new and compact expressions for the scattering amplitudes in this low energy
limit are derived in terms of the logarithm of tile Gamma function, its integral and their derivatives. These simplified

forms in Eqs. (41) and (42) are also produced from extant integral forms for splitting matrix elements derived first in

[2,4], thereby facilitating the first analytic demonstration of the equivalence of splitting rates obtained by the S-matrix
formulation in the Landau representation and those derived using Schwinger-type techniques.

II. THE GENERAL S-MATRIX FORMALISM

The rates for photon splitting within an S-matrix formulation can be developed using a variety of conventions;
here the Landau representation used by Mentzel, Berg and Wunner [1] is adopted, and formal developments lead to

an independent confirmation of their analytic derivation. Specifically, for a field B = (0, 0, B), this approach uses a

representation of the electron/positron wavefunctions as eigenstates of the magnetic moment (or spin) operator p_
(with /_ = ma + 75/3tr × [p + cA(x)]) in Cartesian Coordinates within the confines of the Landau gauge A(x) =

(0, Bx, 0). Such states turn out to be very convenient because they generate useful symmetry properties; they were
identified by Sokolov and Ternov [29], who dubbed them states of "transverse polarization." Let e, e' and e" denote

e't =1, 1]), and k_, (w,k), k u (J,k') andthe polarizations of the initial and final (primed) photons (e, g, = ' =

k_ = (J',k") denote the absorbed and produced photon four momenta. Then the total rate for splitting via tile

polarization mode e _ e'e" can be written, using Eqs. (27)-(29) of [1], in terms of the S-matrix element S_ ) , which

is the sum of six terms S (z) corresponding to the six viable time-ordering possibilities:
fi,j

rnc 2 d3k , d3k . 1 X-" S (3) _
R_e'e" = _ _ _ T _ /i,j , (1)

j=l,6

where V and T denote the volume and time associated with the interaction calculation and the factor of 1/2 out

the front avoids doub!¢ counting of the final states. The priming convention adopted throughout the paper is one and

two primes for the produced photons and no prime for the initial photon. Since the S-matrix element contains a delta

function $4(k_, - k_, - k_) prescribing four-momentum conservation for splitting, it is squared in the usual way using

4 . , .1, 12I_ (kp - k, - kt_ ) ---+[VT/(2r) 4] _4(k_ - kt_ - k_). Note that the S-Inatrix element should possess a cubic dependence
on photon energies when well below pair creation threshold, due to parity symmetry, photon gauge invariance, and

the antisymmetric nature of the electromagnetic field tensor; details are discussed in [4].
Before writing down expressions for the S-matrix element terms, it is appropriate to identify the dimensionless

convention that shall be adopted throughout this paper. Since the electron rest mass m is the only mass that enters
into this QED problem, we opt to scale all energies by mc 2 and momenta by mc unless otherwise specified. This

includes a scaling of mc2/h for photon frequencies w. In the spirit of this convention, we choose to use the symbol
to represent dimensionless electron energies and reserve E (= Emc _ ) to denote "dimensional" energies as in [1].

In addition, the magnetic field will be expressed in terms of the quantum critical field Bc = m2c3/e5 hereafter, so
that B = 1 denotes a field of 4.413 × 1013 Gauss. .......

The convention for polarizations is identical to that assumed in [1], who opted for real polarization vectors with zero

time components. The polarization states 2. and I] are defined according to whether the photon's electric vector lies
either perpendicular or parallel (respectively) to the plane containing the photon's momentum k and the (uniform)

magnetic field B vectors, the convention of [1,13,6,16,10,30]. In the limit of zero dispersion, three polarization modes
are permitted by charge/parity (CP) invariance in QED, namely 2.--_[[H, 2.--42.2. and []--+2.H- However, Adler [4]

showed (see also [31]) that for weak vacuum dispersion (roughly delineated by B < 1 ), where the refractive indices
for the polarization states are very close to unity, energy and momentum could simultaneously be conserved only

for the splitting mode 2._1111- This kinematic selection rule applies to gamma-ray pulsar magnetospheres where
plasma dispersion is negligible. In magnetar models Of s0ft gamma repeaters, where supercritical fields are employed,

strong vacuum dispersion arises. In such a regime, it is n0t clear whether Adler's selection rules still endure, since his
linear dispersion analysis omits higher order (quadratic) contributions [13,14] to the vacuum polarization tensor (e.g.
those that. couple to photon absorption via splitting) that may become significant in supercritical fields. Furthermore,

plasma dispersion effects, which can nullify the vacuum selection rules, may be quite pertinent [32] to soft gamma

repeater magnetospheres, rendering them distinctly different from those of conventional pulsars. Therefore, in the
interests of generality, consideration of all three CP-permitted splitting modes is adopted throughout this paper.



Thederivationof theS-matrixelementproceedsalonglinesidenticalto thoseinMentzel,Berg& Wunner[1],with
theresultbeinganexactreproductionoftheir analyticformalism,asreportedin Weise,Baring& Melrose[11];for
details,oneisreferredto [1] Of thesix q(3) contributions to Eq. (1), it is sufficient to explicitly present just one:• "'fi,j

SI(a) -i 7r2 (4rrcrr)a/_B 1 , ,, /i,1 _- --16 X/W W'Wt' _(2V) 3--]-ff (_(4)(}# - kit - k_) E E _l dpz
r_ nln II cr o.la It

x

++ l* +- t -+ -- _'t +- t -+D.,,_(k ):D,_.,,(k )'D,_,,.,(k) -/),_,_,(k )Dn,,,_(k )D,_,n,,(k )

e e'e" (e + e" + _o'- ie) (e' + e" + _ - ie') p--p,-k ,p =-p_--k,,_ ., ....

(2)

where mr = e2/(hc) is the fine structure constant, and the energies c and E0 are defined in Eq. (4) below, with
similar definitions for the primed energies involving primed quantum numbers and momenta of the virtual electrons.

Using the J notation in Eq. (6) below,

l* I*

++ " .' " 0) [,q _a + '_a_2] _'_':D,_(k ) = J(-k'_' I - 1, -k u I",

If I* f* If

+ J(-k': In', -k u In - 1, 0) [_4 _z + K2 _¢3]e+

-- ( " 0) [_:i*K4 -}- _4 /¢21 Jt-k_ln' 1 -kyln-l,O)[_lga+_ta*_l]}elz'Y(-k"ln',-kyln, '" - - , " '" ,

= - ' [_1_2 +_a_4 ]79+2,,(k' ) g(-k" In 1, O]n", ku) " "" " "" e'._

['_2'q + '_4'_a] e++ j(-k; I-, Oln"- 1, k_) * "" • "* ' (3)

-- { [_2t¢2 -1-g4_:4 ] Y(-k:ln 1, Olntt-l,k;)[t¢l_l "1-_3_3 ]}
• II* -- * 11. * 11. elza(-k; In, 0In", k;) * "" -

-- ! in / ' __k;)r t I, ., 1!DZ,+_,(k) = a(kx In" 1, k u [n4na + n=nl] e_

.1 n I ii f l It I It+ J(k=In",k_I - i,-k_)!.%_4+ =_=_]e+

I II I II .I II }

-- e z ,- [,_,,_, + I 1, k_ I 1, -ky) ,,1,,11a(k_ In", kyIn', -k_) _=_]- J(k,: n"- ' n' " " " ' "

where the polarization vector % = (0, e,,eu, e_) is specified by e± = e_ + ie u and e_ , and similarly for the final
photon polarizations (primed). The other three T_s in Eq. (2) are not displayed here for brevity; they can be obtained
from those in Eq. (3) simply by the interchange e+ ++ e_ of polarization components (and similarly for primed

components) and a relabelling of the J s that produces a correspondence 7) q'q (k) --+ D_7 q'(k)flail

Several notations need to be identified. First, the particles have energies E, and momentum components p; along

the field. The energies c and go that appear here are, respectively, with and without the parallel momentum p, :

E = X/I+p_+2nB , eo = _+2nB , (4)

with n denoting the Landau level quantum numbers, as usual. The other quantum number pertaining to the
eigenstates of p_ is tr = 4-1, which signifies the spin state of the fermions ( [1] used the label r ; here the notation of
Melrose and Parle [15] is preferred), and satisfies p_¢ = trs0¢. It does not appear explicitly in e, but is embedded

in the spinor coefficients tci:

/1/ 00/_ __ 0 0
=

_3 0 __ -6+

_4 0 -a+ a_

ff(_o "1- 1) (e '1- e'o)

s/"__o_-1

_/_o_+_
p_vT¥;o

i X/(eo - 1)(e + eo)

(5)

for (f+ = 5o,1 and 5_ = (i --(_n,0) So,-1 where the spin quantum number _r takes on two values except for the n = 0

ground state (zeroth Landau level), where only o"= 1 is permissible. Here 5i,j is the familiar Kronecker delta. The



primedcoefficientsK_and_' aresimilarlydefinedin termsofprimedmomentaandLandaulevelquantumnumbers,
subjectto themomentumconservationimplicitin Eq.(2).

The J functions that appear in Eq. (3) are integrals over the oscillator functions (Hermite polynomial products),

a form undeveloped in [1]. Here, Eq. (7.377) of [33] is employed to express these integrals analytically in terms of

generalized Laguerre polynomials, n'_'-_(x) (see also Eq. (47) of [15]):

 'lo, : +9'1)
where p (> 0) and the phase ¢ are introduced for convenience of notation: a = pcos¢ and ff - fl = psin¢.
Note that the fls are always k u s and a is always a kx. Here the I,v,, functions follow the Sokolov and Ternov

convention [29] up to a factor of n!, being related to the J functions of Melrose and Parle [15], and both are defined

in terms of the generalized Laguerre polynomials (see [33]):

In,,,(x) = (-1)"'-"/_,,,(x) = a,_,_,(x) n_n_lle-_/=x(n'-n)/2n2'-n(x),
n/>_. (7)

Values for n > n I are obtained by interchanging indices, as indicated. Hereafter, the (modified) Sokolov and Ternov

convention for writing the Laguerre polynomials will be adopted. Complex conjugation of Eq. (6) can be used to

establish the identity

' { ')}"qq -1 q (k , (S)7).,.(k) = ( )"'-"

noting that the _,products are either purely imaginary or real, for all choices of spin quantum numbers. The three
factors like (-1) n -= appearing in the second product of three 7)s in Eq. (2) cancel, leading to this product being
just the complex conjugate of the first three 7) s. This useful symmetry property clearly underlines the convenience
of the Sokolov and Ternov choice of wavefunctions when adopting real components for the photon polarization.

The form of the contribution to the S-matrix element in Eq. (2) is identical to that for S_311 given in Eq. (25)

of Mentzel, Berg and Wunner [1]. In the same fashion, it can be found that the expression derived here for S_3!2

is absolutely identical to Eq. (26) of [1], thereby providing confirmation of their analytic developments; it can be

obtained by using the substitutions k' e+ k I' , n' _ n" and d e+ e" in Eq. (3). All other _li,j¢(3)contributions result.

from application of the cyclic permutations

* ___ II II ,
?1 II _ I t t I _ --kD, e; --k/.¢l e/z ks, e/j ,P+l : ku, % ks, e u , k s, e s (9)

-ks, " k'., ' k'., ' -, k';, " k';, " -, -ks, "P-1 : e s e, , eu es , e s e s ,

where k s = (_, k), e s = (0, e_, ey, e_), etc. Observe also that a minus sign and the complex conjugation of the po-
larizations are always associated with the initiM photon since it is absorbed in the process. Given these permutations,

the crossing symmetry for splitting is manifested in the following relationship between the various terms like those in

Eq. (2) that contribute to Eq. (1):

S(3) : P-1 ¢(3) ¢(3) P+I q,(3) ¢(3) : P+I ¢(3) <,(3) = P-1 ¢(3) (10)
]i,3 _']i,2 , '-']i,4 : '-'fi,1 , '-']i,5 "]i,2 , _.fi,6 '-']i,1 ,

where the permutations act. as operators. This symmetry can be expressed in a multitude of ways using the identities

P+IP-1 =I=P-1P+I and P_31 =I.
It is important to remark that the derivation of analytic forms by Mentzel, Berg and Wunner is not the first in the

literature relating to S-matrix applications to photon splitting. The papers by Melrose and Parle [15,13,14] dealing
with various aspects of QED in strong magnetic fields, specifically from a wave dispersion/response tensor approach,
constructed the S-matrix element for splitting in Eqs. (46) and (47) of [13], which incorporated the quadratic vacuum

response tensor given in Eq. (36) of [14]. This tensor is obviously of a standard S-matrix Landau representation

appearance. Eqs. (2) and (3) can be generated directly (and also S_!2) from the Melrose and Parle evaluation after

a modicum of algebra. Hence, Eqs. (2) and (3) here, and Eqs. (25) and (26) can be used as reliable starting points

for further S-matrix developments.



A. Analytic Reduction: Summation over Spin States

The form in Eqs. (2) and (3) is quite cumbersome. It can be simplified considerably by (i) specializing to specific

but representative directions of photon propagation and (it) analytically performing the summations over spin states
o', or' and e". Restricting the photon motion to the x-direction yields photon motion perpendicular to the field:

since splitting is coil±near in the non-dispersive limit discussed earlier in this paper, it follows that kz = k'_ = k'z' = 0.
This choice dramatically simplifies coefficients of the Laguerre polynomials in Eq. (3). Without significant, loss of

generality, setting k u = h i = k_' = 0 removes nearly all of the phase factors in the definition of the J s in Eq. (6),

leaving just i '_'-'_ . Three such factors emerge in the triple product of D s, leading to a factor of (-1)""-" .
The CP symmetry possessed by the splitting process becomes most evident at this point, since it. is now simple to

derive the CP selection rules. The specification of ky = k_ = k_,' = 0 and k_ = k' = k'_' = 0 yields only one possible
component of polarization perpendicular to the field, e± -= ey = -is+ = ic_ and one conceivable component of

polarization parallel to the field, ell - ¢z (and similarly for primed quantities). The polarization (electric field)
vector of the photons is, of course, normal to the photon momentum vector, which automatically spawns the notation

for the two possible polarization states: _1_: e± = 1, ell = 0 and [t : ex = 0, ell = 1. From the presence
of subtractions in the numerators of the integrands of Eq. (2) together with the complex conjugation property in

Eq. (8) and the proportionality of the 79s to factors like i '_'-'_ , it follows that only terms with an odd number of

" ' " and e± ' " All other termse± factors contribute to =ji,l_(a), i.e. terms proportional to elleile_, erie,. % , e±ellell e±%_.

cancel identically to zero. By virtue of the permutation symmetries in Eq. (9), this is also true for all other _li,jq'(a). It

is then trivial to deduce the CP selection rules for photon splitting, namely that the only permitted transitions are

±-+ 2__1_ , 2_-+ ]l]] , ]] -+ 2-]] (11)

The three other splitting transitions all have S-matrix elements that are exactly zero for collinear photon momenta,
and hence are forbidden. This technique for CP selection rule derivation was implemented in [1]. These restrictions

are simply consequences of the charge conjugation (C) and parity (P) symmetries of the splitting process, i.e. relating
to the transformations k _ -k and B --+ -B.

The summation over the spin states _, 0_' and o'" (= +1 ) produces a dramatic simplification in the appearance

of the S-matrix elements. Such spin summations act only on the products of the '¢i s that appear in Eq. (3); the

algebra is lengthy but straightforward, being facilitated by pairing _Ii,j¢(3)terms with denominators that differ only in

the sign of their photon energies. The total splitting rate in Eq. (1) can be written in the form

e_a m---_2/ dw' JVle._e,e,, 2 (12)

where w" = w - w' is implicitly understood from the conservation of four-momentum. While these rates will be

expressed for photon propagation normal to the uniform magnetic field, the results for general photon obliquities 0
to B can be obtained via a simple Lorentz transformation: _ --+ w sin 0, ,_' --+ w' sin 0, J' -+ _" sin 0, together with

an extra multiplicative factor of sin 0 applied to the rate in Eq. (12).
The momentum dependence in the integrands of Eq. (2) can be simplified by forming sums of the products of energy

_ vR +iE_,u leadsdenominators. Separating such sums into real and imaginary parts via the representation Ea,u - "-%u
to the definition

2R = (d' + J) (e' + s" _) + (e" - e"_,u +e + +e J)(e'+ -w)

{ 1 1 j,)} (13)+ A (e' + e" - _0) (e + e' - _") + (e' + e" + _o)(_ + d +

{ 1 1 }+,u (e+d+J')(e"'+e-w') + (e+e'-J')(d'+e+_o) '

of the real part, where A and p assume the values +1. The imaginary part is not explicitly stated since it will not
be of use in the subsequent developments. The momentum integrations over these ER),,u then assume one of the forms

(14)



for n = 0 or 1 ; generalizations to complex Ex,_ (relevant to calculating splitting rates above pair threshold and near

pair resonances) are routine. These manipulations yield the following compact forms for the .Me-+e'e" coefficients in

Eq. (12):

B _x/Sn n'n"B a Zo + + Z1 -¢_4±-+ilU = -T _ (-1)'_"-"' A_ --*t111 _ [..7" Zo] A# -*1tll
(

npflI_n I¢

B _x/8n n'n"B a Zo + _ Z1Z (-')°"-°' [T"-
(

-,-',-" (15)

, {Mll-+±ll = -_ E (--1)n"-n' x/8nn'n"B3 Zo A_ "+±11+ _ [J" + Z1 - Io] A[ _±'1

results that are to be used in conjunction with Eq. (12). The factor of -B/4 is introduced to render the scaled

amplitudes positive, and also to afford a direct mapping onto limiting forms obtained [8,10] by the proper-time

technique, as will become evident in Section III. The A_ -_c'd' are differences of triple products of generalized

Laguerre polynomials (defined in Eq. [7]); for _l_-+llll

A_-+IIII ,, llnll n= I.-1,.,-1 , In',n"-i I,v'-1,.-1 l.,-,,,v,

I I

A_ -_1111-- In_l,n,_1'' I,_,,_1,._1 In'-1,." -- I'n',n, l_,,,n I.',."-1

A_ -HIll = " In'-L." 1",., 'In_l,n,_ 1 I',,,. -- I_,,_l,n_ 1 In',n"-I

(16)

where the Sokolov and Ternov representation of the associated Laguerre functions in Eq. (7) is used together with

the priming notation

thereby aiding brevity. For the ±--__L_Lmode,

A_ -+±± " I.,,.,,- - "&,,,._ Ig_1,.,I_,n'- I 1 1

/k_ "-_I'L = IJnl,n,_l In"-1, n In'-1,n"- I"_1,,_,

. , ,,= In,n,_ I In,,_1,n In',n"-i -- In-l,nJ

II l

A} -'+'ti = I,,,,_,_1 In,,,,_-i I.,-l,.; - I"_1,,_,

In"-- 1,o In'-l, nu

I'",.- 1 In',n"- 1

I',,,._iI.,_1,n"

l',,_l,n I.',n"-I

(18)

and the results for the JJ--__LJJmode are not explicitly stated since they can be obtained by exploiting crossing

symmetries: the inverse of the permutation in Eq. (19) yields the transformation A_ -+1111-+ -A_ -+±11 , A} -+llll -+

Ag -+J-II ' Aax-+llll -+ -A_ -*±11, A} -+1111--+ A_ -_lll . The A_ -_dd' can alternatively be expressed using the a S
functions of Melrose and Parle as in [11]. Note that the potential subtlety of having to include factors of 1/2 for

some contributions from ground intermediate states is eliminated by the specific choice of the Sokolov and Ternov

wavefunctions.
The comparative simplicity of the reduced form of the S-matrix element relative to Eq. (2) is both notable and

comforting. Unlike Eqs. (25) and (26) of [1], this developed form of the splitting S-matrix element has an appearance
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familiarto S-matrixapplicationsofQEDin theLandaurepresentationto strongly-magnetizedsystems,withproducts
of generalizedLaguerrepolynomialsmultipliedbysimplecombinationsof energiesandmomentumcomponents.Ex-
amplesof previousworkbearingsuchfamiliarformsfocuslargelyonlower-orderQEDprocessesandincludestudies
of synchrotronradiation[29,30],singlephotonpaircreation[17,29],andvacuum[34]andplasma[35]polarization.

Forthepurposesoftheanalysisin thenextsection,it ispertinentto definethecyclic permutations

to --4 -w" , w' _ -w , to" --+ to' , (19)
n _ n H r _ n , nH _+ _t

in the spirit, of the P+z permutation in gq. (9). These permutations will appear repeatedly in the developments

below, and lead to the following transformation properties of Eq. (13):

R _E_a £a R ER Ea (20)
Y_'--I,--1 _ 1,1 , --1,1 ''+ _'_'1,--1 , 1,-1 _ -- --t,--1 ,

with £R being invariant, symmetries that are consequences of the arrangements of electron and positron propagators
1,1

in the Feynman diagram for splitting. These translate into obvious mappings between if, if' and fl/' and an
invariance of the /n - It is also easily seen that under this cyclic permutation, the factor in braces in the summation

for Adz+z± is invariant, while the equivalent factor in the summation for fl41l_±ll maps over (up to a minus sign)

to the factor in braces in the fl4z_.lH I summation. As will become evident in Section III, the remaining powers of
-1 in the summations do not provide any unsatisfactory interference in the limits of low photon energy (to << 1)

and high fields (B >> 1 ), so that permutation symmetry can be extended to the total amplitudes in these specific

parameter regimes.

B. Analytic Reduction: Integration over Parallel Momentum

Further analytic development is not only possible, but also desirable, given that the integrations over the momentum

Pz parallel to the field can be expressed compactly in terms of elementary functions. Such tractability facilitates both
numerical evaluations and the derivation of asymptotic limits. In proceeding, since results are sought at energies

sufficiently remote from pair creation resonances, the imaginary parts of the denominators in the EA,_ are dropped

in all further considerations, i.e., we consider only the functions B El, = Regx,, •
It turns out that carefully-constructed contour integrations in the complex pz plane do not facilitate the Pz

integrations. Hence the first step in integrating over Pz is effected by the more cumbersome and less elegant approach
of completing the squares and rationalizing the denominators using products of factors like (e' + e" :i: to). These
factors define poles pij of the p_ integration for i and j being some combination of n, n' and n". Such poles fall
into two types: pair creation ones (e.g. see [17]) that contribute only above pair threshold, due to the structure of the

splitting rate, and cyclotronic ones that must be considered below pair threshold. The appearance of such cyclotronic

poles is an artifact of the rationalization of denominators, so that they are really pseudo-poles of the subsequent
analysis; a consistency check on the algebra is that the S-matrix element be effectively continuous across them. It is

convenient to define energies that correspond to the Pij poles:

(to/'f + H - N./ _0_ + X' - N./' (to,)2 + H,/_ ]v" (21)
_nn' = 2to,_ , _n'n" = _to , gn'in = 2u., /

and three others paired with these, which are obtained via the relations _n',_ + E_, = to", e_,,,_, + E,_,n .... to and

Enn" "{- En"n = to/ . Here the notation

N. = l + 2nB , N: = l + 2n'B , N." = l + 2n"B (22}

is used for the purposes of abbreviation. Observe that, taking advantage of the subjectivity of such definitions, a

minus sign appears in front of the expression for g,,,_,,, a choice that preserves symmetries induced by the mapping
in Eq. (19) in the results that follow. These definitions spawn the following useful identities for the momentum poles:

2 = 2 N.,
_¢nn' gnln --Pnn' = -- iV" =

= 2 N., 2 N.,, (23)
_n l_l._ l I -- _f_ ll_f_ ? --

2 2 _ j_// 2p,_,,. - = - N.

which immediately imply the possibility of poles along the imaginary axis. In fact, Pnn'2 > -min{N., N.'}, with

equality for to'/= IN'-N''I 1/2 , and likewise for the other poles. Note that for the one-vertex calculations of cyclotron



emissionandsinglephotonpaircreationandannihilation,therequirementthat suchpolesbereal,correspondingto
realcomponentsofparticlemomentaonexternallines,ispreciselywhatgeneratesthresholds(e.g.[17])andkinematic
cutoffs(e.g.[30])for transitionsinvolvingvariousstates.

Therationalizationof thedenominatorsyieldsrelativelycompactdecompositionsfor thesesums,aftermuchcan-
cellationandsimplification.Theytaketheform

_R 2 fred c i E'e" elc. + t_"_ E'e}_,,. = o,,. + W 1. _'," e + t_,,. ,. ,

the simplicity of which is contingent upon the energy-conservation restriction w" = w - w'. Here

W = _Jw" + wN" - ¢dH' - w"N "'l .

Identities such as 147 = -2a;w'(e.,,,v + _.,,_)

assume simple forms when expressed as partial

(24)

C1,1 = 0

_ llri t _y'_llr4 l

Pn"n -- Pz Pn'n" -- Pz

tl,1 = 2 2 + 2 2
Pn'n -- Pz Pnn' -- Pz

#¢t -Crltrl ErlsBtt

tl,1 : 2 2 -{'- 2 2
Pnn' -- Pz Pn'n" -- Pz

Observe that a cyclic symmetry is immediately apparent: E_I is invariant under the permutation in Eq. (19), as is

evident from its original definition in Eq. (13). Similarly, the algebraic developments yield coefficients for the E_Ra_ 1

sum, which appears in the cE_A2 terms, as

1 2 {_n"n'_n'n" _n"nenn" [_n,,n__W] }c-1,-I=ULj- W 2 2[e-"-'+J]+ 2 2
Pn'n" -- P_ Pn"n -- Pz

Ce t

t:_h,_ 1 = 0 (27)

fel$ II _nttr$t -4:- _01 Enn _
-1,-1 = -- 2 2 -- 2 2

Pn'n" -- Pz Pnn' -- Pz

ect£ Ertttrt -- _ Erdn
_-I,--i : -- 2 2 -- 2 2 "

Pn"n -- Pz P,m, - P_

The coefficients for the sum E_al.a that appears in the ¢e'Aa terms and the coefficients for the sum _3rtL-a that

appears in the e'e"A4 terms are similar: there is little need to state them explicitly, since the coefficients possess a
relationship to each other due to the pernmtation symmetry enunciated in Eq. (20).

Given these decompositions, it is now fairly straightforward to evaluate the integrations over p_, expressing them
in terms of the an elementary function f with real arguments _ij :

i , E2

log el " 2 _ , if >

pff dp_ g _/g2 _ A/" [g - X/g - A/" [ (28)
f(N',g) = oo_g2-N'-P_ = _ --2 arctan_f £ _ if 0 < g 2 < A/"

,,/_ - _'_ L V_ - _ J '

for real g. The identity arctan z = (1/2 0 log,[(1 + iz)/(l - iz)] with z = -g/v_ - g_ has been used to map across

the singularities at g = +v_ (cyclotronic below pair threshold) and guarantee bounded and continuous behaviour

of f(.N', £)/£ at £ = 0. The integral identity in Eq. (28) can be established quickly with the aid of result 3.513.2 in

[33], using the substitution p_ = v_sinh t and partial fractions. Note that real values (either positive or negative)
of £ are guaranteed by the formalism here, with g = 0 being improbable due to the discreteness of the quantum
numbers n, n_ and n'.

The integration of the coefficients 2;o of the A 1 terms for each of the polarization modes are then straightforward,
and the identities in Eq. (23) can be used to advantage. Similar terms appear in the g_ integrations of parts of the

(26)

(25)

prove useful in the ensuing analysis. The cx,u and lx,u coefficients

fractions. Consider first the result for E_a,t, which has the coefficients



coefficientsof theotherAi terms,whichalsopossessintegrandswith termsproportionalto l/e, l/g and lie" that
formallyleadtodivergencesthatcanceleachother(anartificeintroducedbytherationalizationofthedenominators).
Usingpartialfractions,thedivergentcontributionscanbewrittenasintegralsoverthefinite range-p _<Pz _< P,
rearranging to subtract off exactly-cancelling terms, and then taking the limit as p --4 _. Similar manipulations

are used for the if" integration over ERI_I, where again the leading order terms are individually divergent yet
collectively convergent. Partial fractions can again be used to enable rearrangements and separate tile divergent

terms, which are then integrated over finite ranges as with the Z1 evaluation. The results are encapsulated in the
identities

7.o= W .r,,,,, + 7.,.,, +.r.,,. ,

2(2 _ 2 } (29)I1= £ + W p,,,,:7:,_,, + ,

,7" = £ - W2(_""'_"'_ _-n,,, + c_,n,,(c,,,_, + J) _-_,n,, + _,,_,,(_,,, - ,_) Y',,,, } ,

where

--- .A/"_-,n' f( , _nn') + f(_", _n,n), _-_,.,, = I(H', _,.,,) + f(_r,, _.,,.,), y.,,. = f(H", _.,,.) + f(H, _..,,),

(30)

and

1 1 1
L = _ log_ N"- _ log_ N'- ,_v'-- log_ A{" (31)

No further integration is necessary: the cyclic permutations in Eq. (19) can be used to quickly derive expressions for

,7' and fl" from Eq. (29).
At this point, it is salient to remark that the divergences at £_ = H in the functions f(N',C) pose no problem

for the integral evaluations in Eqs. (29), because these functions always appear two at a time. Below the pair

threshold, these divergences are cyclotronic in nature, being encountered when _v --+ Iv/'_ 7 - v/--_-/71 or for similar

circumstances for the other photon energies. As w tends to such a limit, for example, we observe that. en,,V, --+ x/'A77

and en,,,v --+ -v/-A 777 when H _ > Af" (without loss of generality). This opposition of signs guarantees cancellation of

divergences when the arctan form of f(N', E) is used (arctan(1/z) _ rr/2 - z as z --+ 0), so that continuity across
cyclotron "pseudo-resonances" emerges naturally from Eq. (29), consistent with the continuity of the '-'_,u_'r_functions.

Continuity across pair resonances does not arise above pair threshold, so that true divergences emerge.
The incorporation of Eq. (29) into the scaled matrix elements in Eq. (15) constitutes the final product of the general

analytic developments in this paper, providing rates valid for all energies below pair threshold (and applicable for
non-resonant energies above threshold), and for photon propagation normal to the uniform magnetic field. They are

eminently suitable for numerical computations, having improved upon the analytic formalism of Mentzel, Berg and
Wunner [1] (i.e. Eq. [2]) by performing the summations of the spin states and integration over the momenta parallel
to the field that are associated with the electron propagators. Such developments are prudent prior to numerical

evaluations due to the large degree of cancellation in these sums and integrations.

III. ASYMPTOTIC LIMITS FOR HIGH B OR SMALL w

A fruitful extension of this analysis is the exploration of the simplification of the scattering amplitudes and rates in

two particular asymptotic regimes, namely the limit of highly supercritical fields, B >> 1, and the specialization to

photon energies well below threshold, i.e. w <:< 1. The benefits of such an investigation are twofold. First, it. provides
the first unequivocal analytic demonstration of the equivalence of splitting results from the S-matrix formulation in the

Landau representation and effective Lagrangian/proper-time results from Schwinger-type formalisms in well-defined

parameter regimes. In doing so, it serves as a powerful check on the developments here. Second, in the _ <:< 1 case,
it identifies a new, satisfyingly compact representation of the scattering amplitudes in terms of special functions that

leads to an efficient means of computation.

These two parameter regimes are encompassed under the single limit w 2 << 1 + 2B, which thereby identifies

the appropriate series expansion of the generalized Laguerre polynomials that appear in the amplitudes. For small

arguments x, the leading order terms in the series for I,, ,(x) can be found in the Appendix of [15]. Given that n,
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n' and n" cluster in a manner such that In' - nl _ In" - nl _ 1, this series converges rapidly provided nz << 1.

Hence na_/(2B) actually represents the true expansion parameter here, with J and J' being similarly bounded.

The leading order terms of such expansions for the A_ _e'e'' are linear in the photon energies, while the next higher
order terms are cubic; a more detailed exposition can be found in Weise, Baring and Melrose [11]. The series for tile

integrations of Pz, namely 2"0, _1 , flit `Tt and ,.7 (which do not depend on the polarization mode) are expansions
in w_'/(1 + 2B) rather than w_/(2B). They are independent of photon energy to leading order, with a quadratic

scaling with energy to next order. The series for w2 << 1 + 2B possess logarithmic character in the quantum numbers
in situations when no two of them are equal (i.e. N" ¢ .M' 7_ Y" _ .M):

4 log_ .M 4 log_ .M' 4 log¢ A r''
So ,_ (d- d')(d"-.V) + (.M' - .M")(.M - .M') + (.M" - h')(.M' -.Af") '

2A/"log_ A/" 2A r' 1o_;_Art 2.M" log_ N"
z_ _ -`7" _ - (.M_ Ht)(.M" - ;¢) (.M' - .Mt')(H - .M') (.M"- H)(H' - H") '

(32)

and additionally involve inverse trigonometric functions when two ns (e.g. for N" = A/" ) are in fact equal:

2"0 "_'
.M 4

_, Q - ¢,6t t .2A;" log_ ?v" 2 4.M-(w,,)2 { w" "_ 4 `7,
Zl= (./V" =_t[)2 _77 - _ -Je .tV'(j_qr jkf tt) O_-2_] (jkt'_ jkf it) (2_"_) --

(33)

where

arcsin x (34)=

and the identity arcsin z = arctan[x/x/]-Z'_] has been invoked. This retention of the inverse trigonometric functions
is particularly relevant for determining the high B limiting forms of the scattering amplitudes. Relations similar to

Eq. (33) exist for .M = .M' and A/"_ = .M", obtained by the cyclic permutations through .Ms and photon energies.
The lengthier higher order (quadratic) terms are not explicitly stated for the sake of brevity. This concludes the

preamble that guides the reader in the subsequent specializations.

A. The Special Case of B >> 1

This regime is of particular relevance to the study of magnetars such as soft gamma repeaters. For the two modes

_L-+HIl and It--_-1-[I, only the leading order terms for the Ai and the momentum integrals presented in Eqs. (32)
and (33) are required. Consider first the reduction of 2¢[±_1111. Here the A2 and Az terms contribute leading order
terms only through n" = 1, n = n' = 0 and n' = 1, n = n" = 0 cases, respectively, where it is necessary to use the

full forms in Equation (33), and inverse trigonometric functions appear through the Q(x) function, which assumes
the arguments x = wt/2 and z = w"/2. A similar n = 1, n _ = n" = 0 term is identically equal to zero by virtue of
the A4 factor. The contributions from the A1 and A4 terms possess an entirely different character, being infinite

summations over n, with the values of n' and n" being constrained by In' - n I + In" - nl < 1, producing five

groupings of the indices. The series is evaluated by truncating the sum at n < k, relabelling one of the logarithmic
terms, and then taking the limit k -4 _. The net result is (for w < 2)

4w' (._) 4w" (J)A4±-*IIII _ w"-_- (_")'_ arcsin + ta'x/4 - (w') 9 arcsin -_- -w , B >> 1 , (35)

which, when combined with Equation (12), yields the asymptotic high-B result derived by Baier et al. [8], and

reproduced independently by Baring & Harding [10]; the overall rate for l--+lll] approaches a value independent of
B. Observe that the manifestations of the pair creation threshold for each of the final photons of II polarization

(i.e. at w' = 2 and _" = 2) are the individually-divergent coefficients of the inverse trigonometric functions. Yet,
collectively, due to the energy conservation relation w = wt + a/', such divergences cancel each other to yield a finite

, overall result as a; --+ 2. For the incident photon of _L polarization, the pair threshold of 1+ x/1 + 2B is remote from

w = 2 so that it would only become explicitly apparent when the amplitude was evaluated to higher order in B.
Note also that the a; << 1 limit of Eq. (35) is wJw"/6 and reproduces results obtained in [4] and [6]. The functional

form of Eq. (35) is plotted in Figure 1.
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FIG. 1. The dependence of the scattering amplitudes for B >> 1, scaled by ws , on the fractional energy w'/w of one of

the produced photons, for three different incident photon energies w (in units of rnc 2 ), as labelled. Only the two polarization
modes with amplitudes asymptotically independent of B (in units of Bc ) in this ultra-quantum limit are depicted, namely (a)

-I--@llI] and (b) I[---_k N; their functional forms are given in Eqs. (35) and (36), respectively. The shape of the amplitude curves
for _L--+L.L is independent of w and is very close to that of the ca = 0.1 curves in panels (a) and (b). While the k--@[[N curves
are necessarily symmetric about w' -- w/2, asymmetry is present in the ]l-+.k I] case where w' represents the final photon of
3_ polarization. Note that the magnitude of Mlt._± II diverges as pair threshold w -- 2 is approached.

The equivalent result for the splitting mode .A,'fll+.l_il requires little additional algebra given that it can be obtained
from the analysis just above using the cyclic symmetry transformations of Eq. (19). Carefully keeping track of signs
and all photon frequencies by relabelling at the beginning of the manipulations, the roles of the A4 and A3 terms

are interchanged, and the obvious result emerges:

d_411_±lt _ arcsin - arcsin -I- w' . (30)'

While not established before in the literature, the low energy limit of this, namely d_411_+lll _ w,/,i'/6, yields the

differential rate from previous expositions [4,6] of low energy approximations. The form of Eq. (36) is displayed in

Figure 1, exhibiting the asymmetry expected under interchanges J 4-4 ,/'. In this case, pair threshold structure in the
amplitude appears again for the two photons of parallel polarization (i.e. at _ = 2 and J' = 2), and is also absent

for the produced l photon, being of higher order in B. Consequently, the amplitude possesses a real divergence at
w = 2, a noteworthy occurrence that is illustrated by comparing the two panels of Figure 1. Such divergences, which
are not integrable over w (and therefore patently different in nature from the resonances encountered in rates for

-). --@e:i: ), are Characteristic of the photon splitting rate near resonances at and above the pair threshold of _ -- 2,

corresponding to the creation of virtual pairs in various excited states. In fact, near such resonances, photon splitting
necessarily becomes first order in _f like pair creation as the intermediate states "go on-shell."

The rapid increase of the rate of N--+/ll relative to that of l-+i]ll is exhibited in Figure 2, where the rates have
been scaled by the low energy (w << 1 ) limiting forms (R(w) ex _z_ ) discussed in the next subsection. This particular

scaling is chosen to illustrate deviations from the w << 1 asymptotic forms, and therefore to demonstrate the need

for relinquishing use of them when sampling photon energies near pair threshold, a parameter regime very relevant to
certain astrophysical calculations (e.g. see [27,28]). The dominance of the RII_+±II over R±__IIII near w = 2 apparent
in these B >> 1 results becomes substantive in parameter regimes where the weakly-dispersive vacuum (i.e. for

B _< 1 ) polarization selection rules for splitting derived by Adler [4] (which prohibit ll--+.l-N and _k-+_L_l_ splittings)
may not. apply if non-linear contributions to vacuum polarization or plasma effects are significant. This underlines
the saliency of a detailed determination of the dispersive properties of the magnetized vacuum or plasma medium

appropriate to a particular astrophysical scenario.
The derivation of the B >> 1 form for the amplitude for _L-__LL differs significantly from the results just expounded.

First, contributions from nH = 1, n = n' = 0 and n' = 1, n = n" = 0 and n = 1, n' = n" = 0 combinations are
identically equal to zero by virtue of each of the associated Ai factors. This automatically implies that no inverse

trigonometric functions that have arguments independent of B appear in the amplitude, a property not possessed by
the other splitting modes. The consequences of this are twofold. First, this cancellation implies that the scattering for
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_l__.k_l_isof ahigherorderin B than for the other two splitting modes. Second, since any potential appearance of

inverse trigonometric functions spawned by the forms in Eq. (33) involves arguments that depend on B through the

A/'s, these arguments are always small when B >> 1, precipitating a redundancy with the low energy limit. Hence, it
follows immediately that the scattering amplitude for _k--+.l__l_ in the regime of highly super-critical fields is identical
to that of the B >> 1 specialization of the low energy (w << 1 ) limit. As the latter has been derived in various papers

in the literature (e.g. see [4,6,11] and the subsequent section), here it is sufficient to merely state the result:

¢zJ_v" B >> 1 . (37)
A4 x-_±/ _ 3B '

This extremely simple form differs profoundly from those of the other two modes because of the absence of photons
of I] polarization in the interaction. Hence any signatures of the pair threshold of 1 + x/_ + 2B of _1_photons are
absent in the domain of w < 2, and a scaling-type form with obvious cyclic symmetry emerges.

Total Rates Scaled b c0<<l Limitin

3 I

2
¥
3

v

3

O

0
0

B>>I

il-'±il

±-'llll

.5 1 1.5 2

6_

FIG. 2. The total rates in the B >> 1 limit for the modes .l.-+i] ]6 and li--+_l_li, computed according to Eq. (12) using

the amplitude formulae in Eqs. (35) and (36), divided by the rates that would be computed when taking the low energy
( w << 1 ) limit of these amplitudes, i.e. Ad±._+llIt _ ww'J'/6 _..hAil._±ll. Deviations from such low energy approximations (i.e.
R(w) c_ ws ), while significant for .I---+i116,are dramatic for ][--_.l_l[ near pair creation threshold w = 2.

B. Approximations for w << 1

The low energy limit w << 1 is of interest not only because it was the regime where compact analytic expressions
for the splitting rates were first obtained [2-4], but also because the analysis that follows derives simple and ele-

gant representations of the scattering amplitudes in terms of well-known special functions that provide a convenient
alternative option for numerical evaluations.

The amplitudes for each of the splitting modes should exhibit a cubic energy dependence [4] when w << 1. Hence,

a necessary product of the Landau representation formalism is that terms linear in photon energies should contribute
exactly zero. For the polarization modes _l_--+[]f] and [[-+-1-[1, whose amplitudes are identical in the low energy limit

[4,6], the demonstration of this is not dissimilar to the B >> 1 analysis. The w << 1 restriction generates a single
infinite series in n due to the clustering of n' and n" around n. The ensuing algebra in the simplification of this
series is moderately lengthy, and requires re-indexing of the logarithmic terms to assume forms involving log e [1 + 2nB],

and also some relabelling of the rational functions. Care must be taken in these rearrangements due to the infinite
nature of the series, and the technique adopted is outlined just below. The terms linear in photon energy result in

zero, as expected: for more details, the reader is referred to [11]. The next order contribution is cubic in energy,
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asdesired,with termscomingfroma mixtureof (i) thelineartermsof the Ai combined with the quadratic higher
order terms of the pz integrals, and (ii) the cubic Ai terms in conjunction with the leading order (constant) terms

from the pz integrals. The algebra is straightforward, but lengthy and tedious, generating an exact cancellation of
all but terms proportional to ww_ '' . This approach leads to a reproduction of the Cj listed in entirety in Appendix
B of Weise, Baring & Melrose [11] for both the _1---_[1[[and _I_-+±_L modes of splitting. Hence there is little point in

replicating these expressions here; the reader is referred to [11] for details.
These results are expressed as single infinite series in the label n, which sometimes starts at n = 0, and sometimes

begins at higher integer values (up to 3). Hence, an aesthetic goal is to rearrange some of these series so that the
summations in each contribution begin at n = 0, and then add the terms in the series together. This is a non-

trivial exercise, given the divergent nature of the series in many of the individual contributions. Hence, considerable
care must be taken when performing the rearrangements, for which there is no unique prescription. One choice for

relabelling the sums is adopted by Weise, Baring & Melrose [11], though their end results expressed in their Appendix
C do not facilitate analytic development in the most expedient manner, and were in fact erroneous (discussed briefly

below). An alternative and preferable choice for rearrangement of the multitude of series over the label n is adopted
here, outlined as follows. Inspection of the various Cj contributions in Appendix B of [11] reveals that they always

consist of three types of terms: (i) logarithmic ones proportional to log,[1 + 2(n + l)B], for I = 0, +1, +2, +3, (ii)
rational functions of 1+ 2(n + l)B for I = 0, +1,-t-2, and (iii) polynomials in n. A unique method for rearrangement
is to truncate all series to finite ones with n _< k, and then perform relabellings so that the first two types of terms

consist only of log, [1 + 2nB] terms and rational functions of 1 + 2riB. This approach provides no particular focus on
series that originate with labels n > 0, but requires careful accounting of the remainder terms at the upper and lower
ends of the sums, for which significant cancellation arises. The coefficients of the logarithmic functions, originally

cubic in n, reduce to linear functions of n in this development. The consequent simplification of the series terms is

counterbalanced by the transferral of complexity to the constant remainder terms, Which are purely functions of k
and B. Taking the limit of k -+ oo achieves the desired (and convergent) result.

After considerable algebra collecting together all the constituent series in Appendix B of [11], and performing the

rearrangement as just prescribed, one arrives at the following series representation of the scaled scattering amplitudes:

.M_-.e,_,, = wwt w" lim _ Te_e,,,,(n, B) + 7¢e_e',"(k, B) (38)
k ...4 oo

n=0

for w<<l, where

(_.__n 3 ) [ 1 ] (2 1 ) 1T±__,lllt(n,B) = - + _ logo n + g-g + + _ ] + 2rib -

log, ,*+ _ - _ 1 + 2rib + _ (1 + 2riB) =

3(I + 2nB) 2
(39)

defines the series terms. The remainders are quite lengthy, and are listed in Appendix A.

Consider first the polarization mode ±-_llll. While possibly only marginally simpler than Eq. (C1) of [11], the

series and remainder in Eqs. (38), (39) and (A1) naturally enable the development of a special function representation
of the scattering amplitude. The finite summation over terms like (x + n) loge(x + n) in Eq. (39) can be expressed

using result 44.1.2 of [36] in terms of an integral of the logarithm of the Gamma function. At this juncture, the

analysis begins to image parts of that generated in expressing the polarization properties of a magnetized vacuum
via effective Lagrangian or proper-time techniques [37-39], as should be expected. Hence, it is appropriate to adopt
definitions from such literature as much as possible. Following [37,38], here a definition for the generalized Gamma

function FI(X) of

fo _ 1 x(x - i) - x (40)log, F1 (x) = dt log, I'(t) + _ _ log, 2rr

is adopted. Properties of this function, which include FI(1) = 1, are discussed at length in [40] and outlined in

Appendix B.
Using Eq. (B1), one soon arrives at an expression for the scattering amplitude in terms of a handful of special

(polygamma) functions, namely Fl(z), and log_ I'(x) and its derivatives. This representation consists of two parts,
one independent of k, and one that involves a limit as k _ oc of the remainder in Eq. (A1), combined with several
terms incorporating the special functions with arguments that depend on k. In evaluating this limit, most terms can
be handled in a straightforward manner, and standard asymptotic series (e.g. see [33]) for log_ F(x) and ¢(x) as

x -', ec prove useful. However, the treatment of the term involving the function log, FI(1 + k + 1/2B) that appears
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in the limit contributionisnon-trivial.A seriesrepresentationforthisfunctionforlargeargumentsis required,and
ispresentedin Eq.(B4).Assemblingthevariouspieces,thelimitingresultas k -+ co is

=. _logeP1 -_log er - _+_ g'

(41)

1 1 4L1 1
loge

12B 7 6B B _ , J
for w << 1. This is the soughl-after compact analytic form that is comparable in simplicity to the one-loop effective

Lagrangians calculated in [37,38]. Using series and asymptotic expansions for all the special functions present, it is
routine to establish that .M±._,IIII _ (26B3/315)ww'w '' for B << 1, while for B >> 1, one finds .hd±_llll _ ww'J'/6,

a result obtainable from Eq. (35).
The developments are similar for the _I_--+.L.L mode: this representation again consists of two parts, one independent

of k, and one that involves a limit as k -+ oc of the remainder in Eq. (A2), combined with several terms incorporating

polygamma functions with arguments that depend on k. This limit can easily be evaluated using asymptotic series

to yield (for a_ << 1 )

_ 3 3+
(42)

,+
)

Using series and asymptotic expansions for all the special functions present, it is routine to establish that .M±_±±

(48B3/315)wa/w " for B << 1, while for B >> 1, one finds Ad±_±± _ ww'w"/(3B), the result stated in Eq. (37).
It must be remarked in passing that the expressions for .1_-+_1__1_in Eqs. (39), (A2) and (42) cannot be derived from

the series in Eq. (C2) of [11], principally because that series expression is divergent, and therefore erroneous. Such an
error was introduced by an inappropriate rearrangement of individually-divergent contributing series (leading to the

addition of infinite contributions), a mistake that is avoided by the careful technique employed here in manipulating
the results of Appendix B in [11]. Notwithstanding, the numerical results for the _I_-+_L_I_mode presented in [11]

were effectively evaluated before any series rearrangement, and therefore remain valid.

0
Scaled Scattering Amplitudes for Y_'F't'

' I ' I ' I ' I '

w<<l

FIG. 3. The dependence of the scattering amplitudes, scaled by wJw", on the magnetic field (in units of

B_ = 4.413 x 10 a3 Gauss) for the splitting modes -l---*llII (see Eq. [41]) and .l_---__[__k(see Eq. [(42]), for photon energies
well below pair creation threshold. The amplitude for 11--+-1-1[ is identical to that for -1---411[[.
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The compact analytic forms presented in Eqs. (41) and (42) represent the culmination of the w << 1 focus here. It
is the first time such simple forms for the scattering amplitudes involving just special functions have been calculated

in this limit, though somewhat more convoluted, yet essentially equivalent, expressions have been put forward in

[41]. A distinct advantage of the expressions in Eqs. (41) and (42) is the ease with which they can be accurately
computed numerically. Their dependence on B is illustrated in Figure 3, replicating the numerics of [11] and earlier

effective Lagrangian determinations [4], which are just as expedient since (see Eqs. [43] and [45] below) they involve

just integrals of elementary functions.
The low frequency result for 3Ai1_±ll is not presented explicitly since it reproduces that for .Mj__ttlt (e.g. see

[4,6]); this is due to the crossing symmetries involved. Note that while the cubic dependences of all the modes at
low energies reflect the lack of an energy scale in this domain (i.e. such as pair threshold), the normalizations are
dependent on the polarization mode, particularly at highly supercritical fields where the _4±__,±± amplitude is highly

suppressed. This effectively represents how the rate normalization is sensitive to the (virtual) pair creation thresholds

for the polarization states involved in a particular splitting mode.
To conclude this presentation focusing on the w << 1 specialization, an obvious objective is the re-derivation of

Eqs. (41) and (42) starting with extant and well-known effective Lagrangian/proper-time (ELP) results, and thereby
demonstrating analytically the equivalence of the S-matrix formulation in the Landau representation and Schwinger-
type formalisms in the low energy limit. Consider first the mode _l_-_[II], for which such a determination is somewhat

involved. The starting point is the integral expression [4,6,10] that corresponds to the scaled scattering amplitude

that generates the same form for the rate as in Eq. (12):

"v'x--'llll - B 7 - + si-l-n-_s + 12sinh2s +_ '

which has B << 1 and B >> 1 limits matching those of Eq. (41). In the subsequent analysis, it is useful to manipulate

integrations using the variable p = 1/B. The first step is to recognize that 1/s 3 times the factor in curly braces in
Eq. (43) is a perfect derivative, namely dg/ds, where g(s) = (1/4s 3) d[seoth s - 1]/ds - coth s/(6s). Integration by
parts is obviously the operative method, with the goal of retaining coth s functions explicitly, combined with powers

of s. After some algebra, one finds that

,/0 , 1= -_ ds a-'l" _ - 4-gTs - _ + (s

-lfo_dSe-'/S[sc°ths-l-_]

coth s - 1)

(44)

results. The integral on the first line can be performed using identities 3.551.3 and 3.554.4 of [33], yielding the Gamma

function and polygamma functions (or equivalently generalized Riemann Zeta functions) in addition to elementary
functions. The only subtle part pertains to the second term of this integral, namely that contributed by the -1/(4Bs 2)
factor. This can be differentiated with respect to B, evaluated to yield a ¢ function, and then the result integrated,

noting the behaviour as B --+ 0. The evaluation of the integral on the second line of Eq. (44) is much more involved.
However, it. has been performed before in the literature, and appears explicitly in calculations [37,38] of the one-loop

effective Lagrangian describing refractive indices of the magnetized vacuum in QED. Hence the motivation for the

particular partitioning of integrations chosen in Eq. (44). Details of the determination of this integral are found in
Dittrich et al. [38], and the second line of Eq. (44) can be equated to -87r2/B 3 times the Lagrangian /_(1)(B) (see

Eqs. (2.4) and (3.16) of [38]), thereby introducing the rx function. Collecting together the terms neatly generates

an analytic form for .M_L_.PIIlt that is identical to Eq. (41), so that the desired demonstration of equivalence of the
Landau representation and effective Lagrangian forms is achieved.

The procedure for the _1_-+.1__1_mode is similar, though somewhat less involved. The equivalent scaled scattering

amplitude obtained [4,6] from effective Lagrangian/proper-time techniques is

x.4ELP ww'w"fo_dSe-,/B{3C°shs 3-4s2 3s2 } (45)_"±-'*±± -- B 7 4"s _ + _sinh 2 s _ "

Recognizing that the factor in curly braces can be written as -(3s/4) d[coths/s- 1/s_]/ds + (s2/4) d3[coth s-

1/s]/ds 3, integration by parts is again indicated, with identities 3.551.3 and 3.554.4 of [33] again proving useful.
With manipulations similar to (but simpler than: the F1 function is not involved here) those for the .l_---_]]J], a
modicum of algebra leads to the derivation of Eq. (42) from Eq. (45), as desired. This equivalence is a satisfying

indication of the verity of the Landau representation analysis in this paper.
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IV. CONCLUSION

This paper has provided a detailed development of the S-matrix formulation of the QED process of magnetic

photon splitting in the Landau representation, focusing on the case of zero dispersion where photon propagation is
collinear. The formalism in Section II rederives and extends the exposition of Mentzel, Berg _ Wunner [1]. The

two principal general developments offered here are an analytic reduction via the summation over tile spins of the
intermediate pair states, discussed briefly in [11], and the analytic integration over the momenta parallel to the

field incorporated in the electron propagators. This latter accomplishment is presented here for the first time. The
cumulative product of these developments is a satisfyingly simple and elegant form in Eq. (15) for the scattering
amplitude for each of the polarization modes permitted by CP invariance. These amplitudes possess products of

generalized Laguerre polynomials that are common to QED processes in external magnetic fields, and elementary

functions involving the photon energies and the various pair thresholds associated with the propagators. Moreover,
the analytic forms presented consist of just triple summations over Landau level quantum numbers of the intermediate

states, and are eminently suitable for accurate numerical computations both below and above pair creation threshold
w = 2. The applicability of these results to regimes above pair threshold is a benefit of the S-matrix expansion in the

Landau representation that is not afforded by effective Lagrangian and proper-time calculations: while these (latter)

Schwinger-type techniques elegantly formulate splitting rates below pair threshold, they eliminate the resonance
structure early on in their mathematical developments, a Severe limitation above ¢z = 2.

As an embellishment to these general results, specializations in two significant domains have been obtained. The

first is for highly supercritical fields, B >> 1, reproducing in particular the result of [8] for the _l--+lIII mode, and
deriving new results for the other two modes permitted by CP invariance in the limit of zero dispersion. The second

group of asymptotic results are for energies a_ << 1 well below pair creation threshold, where new and compact
expressions for the scattering amplitudes have been derived in Eqs. (41) and (42) in terms of the logarithm of the
Gamma function, its integral and their derivatives. These two domains of specialization herein have facilitated the

first analytic demonstration of the equivalence of splitting rates obtained by the S-matrix formulation in the Landau

representation and those derived using Schwinger-type effective Lagrangian/proper-time techniques.
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APPENDIX A

Here the remainders that appear in the series representation in Eq. (38) for the w << 1 specializations to the

splitting amplitudes for polarization modes l--_[]ll and J_-+lJ_ are presented:

TC'±_IIII(k' B) - k + l [2k "2+ k(4 + l) + B] l°ge[k + 2 + 2----t_]8B

-1-_-[k34B ll +k_(16+ 22____)+k(5+_+_B___+_.B___95 _ 5 ] log e[k+_B]
(A1)

4B _-1 log_ k-l+_

(B 1 k + 1'_ 1 k
- ,, (k+l)+g+--_---] l+2(k+l)B +2B[I+2kB]

9k 2 5k 7k 5 9 3
2B B 4B _ 8B 8-ffz - _ log, 2B ,

and

17



_.l__.t.a.(k,B) = -(k + 1)(k + 2)(k + 3)

k+l
16B

+A__
16B

1

16B

k
+]-_

12B log,[k + 3 + _Ag]

]
"7--_k3 + k= ( 38 + 2_ ) + k ( 7---_- 4 ) +12 - 2 ] loge [k + l + _---_]

___ "_k3+ k2(13 + 2--9-_)-k(2_ 0 _)+ 2J--_] loge [k + 2-_]

"l---_k_" + k ( 2 + J-_ ) - .1---ff] log, [k - i + _----_]

+ 2(k + 2)B]

_ (k + 1)2(5k + 2) k2(5k- 1) k(k - 1) 2
211+ 2(k + 1)B] - 211+ 2kB] + 211+ 2(k- 1)B]

7k 2 7k 9 k + 1 3
+q--g + _-g+ _-g+ --gr- + 4-b-r log, 2B .

(A2)

APPENDIX B

In this Appendix, various useful properties of the FI(x) function, the integral of the logarithm of the Gamma
function, that are needed in the w << 1 specializations are stated. Given the definition of F1 in Eq. (40), it is

elementary to establish, using 44.1.2 of [36], that

k

E(x + n)loge(x + n) ---- loge rl(1 + • + k) - log e rl(x) (B1)
n=0

Taking successive derivatives with respect to z, one quickly arrives at well-known finite series representations of F(x)
and its logarithmic derivative ¢(x) ; see [33,42] for discussions of these functions and their series representations.

An asymptotic series representation for the F1 function for large arguments is useful, and can be derived with the
aid of the following series representation (see result 8.343.2 of [33]) for the logarithm of the Gamma function:

(1) 1 1_ m [ 1 ] (B2)log, F(x) = x- log, x-x+_log, 2_r+_ (m+l)(rn+2) _(rn+l,x)-
m=l

from which Stirling's asymptotic expansion can be derived. Here, _(m,t) is the generalized Riemann Zeta function,
defined in 9.511 and 9.521.1 of [33]. The integration of this series is effected using the identity ¢'(m,/) = -((m+ 1, t),
and is mostly uneventful. However, the treatment of the m = 1 term in the summation is somewhat more subtle, due

to the singular nature of ¢(0, t), and requires taking the limit m --+ 1+ , assuming m to be a continuous variable.

Then result 8.362.1 of [33] comes in handy, and the series identity

1 1]x-1 (2x logex-x-1)+ 1 [_(x)+ _ + 7E-log_Fx(x) - _-
(B3)

+2 (m+l)(m+2) ¢(m, 1)-i(m,x)-l+
rr_=2

follows, where 7E = --_,(1) ._ 0.5772 is Euler's constant. This series, which adequately substitutes for an asymptotic

representation, can be used very effectively for numerical evaluations for all x > 1. For the range 0 < x < 1, this series
also effects accurate evaluation of log e F1 (x) via use of the recurrence relation log e Fl(x) = loge F1 (1 + x) - x log_ x,

an identity derivable from Eq. (40) with the aid of 6.441.3 in [33]. For large z, it then follows that

log e r,(_) ~ _(_- 1) + log, x - -]- + L1 + O (B4)
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where

1 1 ¢(m,a)-i
(m + 1)(m + 2)

rn----2

= lira _n log en- + iogek

(B5)

with numerical value L1 _ 0.24875. This is just the constant appearing in the magnetized vacuum polarization

analyses of [37,38], where the Raabe integral form for it can be found. The second definition of L1 in Eq. (B5) can

be obtained by setting x = 0 in Eq. (B1), and is a result noted by [41].
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